Realistic simulation of the Aplysia siphon-withdrawal reflex circuit: roles of circuit elements in producing motor output.
نویسندگان
چکیده
The circuitry underlying the Aplysia siphon-elicited siphon-withdrawal reflex has been widely used to study the cellular substrates of simple forms of learning and memory. Nonetheless, the functional roles of the different neurons and synaptic connections modified with learning have yet to be firmly established. In this study we constructed a realistic computer simulation of the best-understood component of this network to better understand how the siphon-withdrawal circuit works. We used an integrate-and-fire scheme to simulate four neuron types (LFS, L29, L30, L34) and 10 synaptic connections. Each of these circuit components was individually constructed to match the mean or typical example of its biological counterpart on the basis of group measurements of each circuit element. Once each cell and synapse was modeled, its free parameters were fixed and not subject to further manipulation. The LFS motor neurons respond to sensory input with a brief phasic burst followed by a long-lasting period of tonic firing. We found that the assembled model network responded to sensory input in a qualitatively similar fashion, suggesting that many of the interneurons important for producing the LFS firing response have now been identified. By selectively removing different circuit elements, we determined the contribution of each of the LFS firing pattern. Our first finding was that the monosynaptic sensory neuron to motor neuron pathway contributed only to the initial brief burst of the LFS firing response, whereas the polysynaptic pathway determined the overall duration of LFS firing. By making more selective deletions, we found that the circuit elements responsible for transforming brief sensory neuron discharges into long-lasting LFS firing were the slow components of the L29-LFS fast/slow excitatory postsynaptic potentials. The inhibitory L30 neurons exerted a significant braking action on the flow of excitatory information through the circuit. Interestingly, L30 lost its ability to reduce the duration of LFS firing at high stimulus intensities. This was found to be due to the intrinsic nature of L30's current-frequency relationship. Some circuit elements, including interneuron L34, and the electrical coupling between L29 and L30 were found to have little impact when subtracted from the network. These results represent a detailed dissection of the functional roles of the different elements of the siphon-elicited siphon-withdrawal circuit in Aplysia. Because many vertebrate and invertebrate circuits perform similar tasks and contain similar information processing elements, aspects of these results may be of general significance for understanding the function of motor networks. In addition, because several sites in this network store learning-related information, these results are relevant to elucidating the functional significance of the distributed storage of learned information in Aplysia.
منابع مشابه
Neural circuit of tail-elicited siphon withdrawal in Aplysia. I. Differential lateralization of sensitization and dishabituation.
The tail-elicited siphon withdrawal reflex (TSW) has been a useful preparation in which to study learning and memory in Aplysia. However, comparatively little is known about the neural circuitry that translates tail sensory input (via the P9 nerves to the pleural ganglion) to final reflex output by siphon motor neurons (MNs) in the abdominal ganglion. To address this question, we examined the f...
متن کاملFMRFamide produces biphasic modulation of the LFS motor neurons in the neural circuit of the siphon withdrawal reflex of Aplysia by activating Na+ and K+ currents.
The molluscan neuropeptide FMRFamide has an inhibitory effect on transmitter release from the presynaptic sensory neurons in the neural circuit for the siphon withdrawal reflex. We have explored whether FMRFamide also acts postsynaptically in motor neurons in this circuit, focusing on the LFS motor neurons. FMRFamide typically produces a biphasic response in LFS neurons: a fast excitatory respo...
متن کاملCutaneous activation of the inhibitory L30 interneurons provides a mechanism for regulating adaptive gain control in the siphon withdrawal reflex of Aplysia.
The functional role of inhibition in the neural network underlying the siphon withdrawal response (SWR) of Aplysia was assessed by examining a recurrent circuit comprised of identified inhibitory interneurons (L30s), and excitatory interneurons (L29s). We previously showed that activity-dependent potentiation of the L30 inhibitory synapse onto L29 can regulate the net excitatory input elicited ...
متن کاملDifferential classical conditioning of a defensive withdrawal reflex in Aplysia californica.
The defensive siphon and gill withdrawal reflex of Aplysia is a simple reflex mediated by a well-defined neural circuit. This reflex exhibits classical conditioning when a weak tactile stimulus to the siphon is used as a conditioned stimulus and a strong shock to the tail is used as an unconditioned stimulus. The siphon withdrawal component of this reflex can be differentially conditioned when ...
متن کاملSerotonin mimics tail shock in producing transient inhibition in the siphon withdrawal reflex of Aplysia.
Tail shock-induced modulation of the siphon withdrawal reflex of Aplysia has recently been shown to have a transient inhibitory component, as well as a facilitatory component. This transient behavioral inhibition is also seen in a reduced preparation in which a cellular reflection of the inhibitory process, tail shock-induced inhibition of complex EPSPs in siphon motor neurons, is observed. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 77 3 شماره
صفحات -
تاریخ انتشار 1997